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Abstract. We consider the process γγ→H1H2, where H1 and H2 are either mesons or baryons. The ex-
perimental findings for such quantities as the pp̄ and KSKS differential cross sections, in the energy range
currently probed, are found often to be in disparity with the scaling behaviour expected from hard con-
stituent scattering. We discuss the long-distance pole–resonance contribution in understanding the origin
of these phenomena, as well as the amplitude relations governing the short-distance contribution, which we
model as a scaling contribution. When considering the latter, we argue that the difference found for the
KSKS and the K

+K− integrated cross sections can be attributed to the s-channel isovector component.
This corresponds to the ρω→ a subprocess in VMD (vector-meson-dominance) language. The ratio of the
two cross sections is enhanced by the suppression of the φ component, and it is hence constrained. We give
similar constraints to a number of other hadron-pair production channels. After writing down the scaling
and pole–resonance contributions respectively, the direct summation of the two contributions is found to
reproduce some salient features of the pp̄ and K+K− data.

PACS. 11.30.Hv; 12.40.-y; 12.40.Nn; 12.40.Vv; 13.66.Bc

1 Introduction

We consider the exclusive pair production process γγ→
H1H2, whereH1 andH2 are either mesons or baryons. We
consider the energy region not too far from the threshold,
for example the centre-of-mass energyWγγ < 4 GeV.
It has been found that some of the results of recent

large-statistics measurement of these processes, for ex-
ample at Belle [1–4], are difficult to reconcile with theor-
etical thinking based on hard constituent scattering. For
example, there is a violation of the scaling behaviour ex-
pected from the naive quark-counting rule [5, 6],

dσ

dt
∝
cos θ∗

sK−2
, (1)

where K is the number of ‘elementary’ fields taking part
in the interaction. For instance, K = 1+1+2+2 = 6 for
γγ→ ππ. s and t are the usual Mandelstam variables. After
integration over a constant cos θ∗ interval, where θ∗ is the
polar angle of scattering in the centre-of-mass frame, this
yields

σ ∝ 1/s3 (mesons) , 1/s5 (baryons) . (2)

This scaling is expected to hold when the constituent-
level hard subprocess approximately has a tree-level per-

a e-mail: odagirik@phys.sinica.edu.tw
b Permanent address: Department of Physics, Punjabi Uni-
versity, Patiala-147002, India

turbative description. As seen in Fig. 1, this fails for
γγ → pp̄ [1, 2, 7–9] in the measured energy range. It
seems to work for γγ→K+K− [3, 4, 10, 11] above Wγγ ≈
2.4GeV but, disturbingly, seems to fail for γγ→KSKS [12]
in the measured energy range of up to Wγγ ≈ 4 GeV.
The latter cross section drops faster with Wγγ , and this
finding, together with the large ratio between the two
cross sections, is difficult to explain in frameworks based
on hard constituent scattering. On the other hand, in
the large-energy limit of the measured range, it has
been found that the calculations of [13, 14], based on
leading-term QCD and wave functions following from
the QCD sum rules, can accommodate the value found
experimentally.
Our main region of interest in this paper is below this

energy range, where the perturbative description is insuf-
ficient to account for the prominent features of the data.
We are interested in the participation of alternative dy-
namics, which are more long-distance in nature, and which
are more appropriate in describing the observed distribu-
tions. At the same time, we are also interested in modelling
the short-distance contribution with constraints from the
amplitude factorisation considerations.
As a starting-point, let us consider VMD (vector-meson

dominance). Here, the photon is interpreted as a quark–
antiquark object, so that the exponentK in (1) is modified.
Corresponding to (2), we would have

σ ∝ 1/s5 (mesons) , 1/s7 (baryons) . (3)
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Fig. 1. γγ → pp̄ cross section [1, 2] versus centre-of-mass en-
ergy at VENUS [7], CLEO [8] and Belle [1, 2] in the central
region, defined by | cos θ∗|< 0.6. The vertical error-bars on the
Belle data are due to the statistical error in the event and the
Monte Carlo samples only. Experimental data are compared
with three theoretical calculations, as described in [1, 2]. Figure
reproduced with kind permission of the authors of [1, 2]

Although the applicability of the quark-counting rule to
the VMD picture should not be taken for granted, this
indicates that the fall in the cross section with the centre-
of-mass energy would be more rapid than is expected
from (1). It is a curious finding that for central events, de-
fined by | cos θ∗|< 0.6, the cross sections measured at Belle
for γγ→KSKS [12] and pp̄ [1, 2] go as ∼W

−(8∼12)
γγ and

∼W−(12∼15)γγ , respectively, for some regions of Wγγ away
from the resonance region. As the exponent is sensitive
to the cut on | cos θ∗|, it is possible that this agreement
with (3) is accidental. We note nevertheless that a result of
the form above can be derived from the consideration of the
Sudakov form-factor effects [15, 16].
Encouraged by this finding, we next consider the fac-

torisation of the scattering amplitude into the production
and decay parts. The production subprocess is dominated,
in case of ideal mixing between ω and φ, by

ρ0ρ0, ωω→ fud , (4)

ρ0ω, ωρ0→ a , (5)

φφ→ fs . (6)

In the above, fud stands for the (uū+dd̄)/
√
2 state. After

relaxing the condition of ideal mixing, fud and fs mix to
give the physical f and f ′ mesons. We are not necessar-
ily adopting the s-channel resonance picture, and f and

a are, for now, merely a label of the s-channel flavour
structure.
The quark-line diagrams are shown in Fig. 2. The

production-decay factorisation assumption implicitly cor-
responds to the choice of the ‘handbag’ diagrams (a) and
(b) of Fig. 2, neglecting the 4-quark intermediate state
of the ‘cat’s ears’ diagram (c). When considering long-
distance dynamics, due to the degeneracy of the meson
trajectories, we shall argue later that this approxima-
tion is acceptable for meson-pair production, but not for
baryon-pair production. On the other hand, while calculat-
ing the short-distance contribution, the relative size of the
cat’s ears diagram is sensitive to the factorisation scheme
adopted. Here we limit ourselves to the remark that in
the findings of [17, 18], and for the energy range currently
probed by experiment, their so-named ‘handbag’ approach
is appropriate for describing some features of the data at
hand. For instance, the angular distribution for the KSKS
process, as seen in [12], is in better agreement than the
more traditional approach of [13, 14], although the overall
normalisation is not well understood in either of the two
approaches.
We have also neglected the OZI-suppressed chan-

nels such as ρ0φ→ f . The decay part can be expressed
similarly.
We see immediately that any difference between the

K+K− and K0K0 =KLKL+KSKS cross sections must
be due to the simultaneous presence of the isoscalar f/f ′

and isovector a= (uū−dd̄)/
√
2 components. It is also not

difficult to see that the large ratio between K+K− and
KSKS processes can be increased by the suppression of
φφ→ fs.
We proceed by modelling the short-distance piece

as a scaling contribution obeying (1) and (2). The long-
distance piece includes the resonances of (4)–(6). These are
related to the t-channel pole picture by duality, so that
we can also model them as Regge amplitudes [19, 20]. The
signature term in the latter case would then represent the
‘cat’s ears’ contributions.
We find that direct summation of the two amplitudes

reproduces some of the salient features of the K+K− and
pp̄ data, although the description of the angular distribu-
tion in the former case is poor.
The modelling of the full amplitude as the sum of the

two contributions at first sight may seem to suffer from
the problem of double counting. However, we find numer-

Fig. 2. The quark-line diagrams
for meson-pair production. Simi-
lar diagrams can be drawn for the
baryon-pair case. Diagrams (a) and
(b) have the s-channel representa-
tion, whereas the 4-quark mode (c)
does not
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ically that adopting the alternative approach of a form fac-
tor that interpolates between the two amplitude in general
cannot yield these results. An intuitive explanation would
be that the finite-time short-distance effects and infinite-
time Regge-pole dynamics have little overlap. More explic-
itly, short-distance amplitudes involve a finite and small
number of intermediate particles which individually carry
large virtuality, and therefore are independent of the long-
distance amplitudes, where virtuality is assigned, in the
parton language, collectively to the intermediate state par-
tons. Hence, in our understanding, any discrepancy with
the data that arise are due to our ignorance of low-energy
dynamics, rather than being due to some form of double
counting in this summation procedure. In any case, such an
approach is not new. For a well-known example involving
the summation of short-distance and long-distance ampli-
tudes, see [21].
This paper is organised as follows. In Sect. 2, we present

the relevant Clebsch–Gordan coefficients for kaons and for
other mesons and baryons. In Sect. 3, we consider the effect
of pole (–resonance) dynamics. The conclusions are stated
at the end.

2 SU(3) analysis

We decompose the (2→ 2) amplitudes into the s-channel
production part and the decay part, so that, for example,
the s-channel scalar part of the amplitudes is given by

A(γγ→ V1V2→ S→H1H2)

= γ−1V1 γ
−1
V2
gV1V2S× gSH1H2 ×F (S) . (7)

The g are proportional to the SU(3) flavour Clebsch–
Gordan coefficients, whereas the dynamics is contained in
the function F (S). The γV are the photon–V coupling con-
stants satisfying

γ−1
ρ0
: γ−1ω : γ

−1
φ ≈ 3 : 1 :−

√
2 . (8)

We shall adopt the ratio 3 : 1 for the ρ0 and ω couplings
later on, but we modify the φ coupling by a suppression
factor

√
δ. It should be understood that this suppression

factor is introduced in order to suppress the f ′ contribu-
tion. The photon coupling to φ is not changed.
We note that the pp̄ data [1, 2] show a clear indication

of the presence of a pseudoscalar ηc resonance, and the

same peak is also present in the KK data [3, 4]. The pseu-
doscalar contribution can be included without modifying
the structure of the formalism.

2.1 Production subprocess

u, d and s quarks are organised into a flavour triplet struc-
ture as follows:

3≡ qa ≡

⎛
⎝
u
d
s

⎞
⎠ , 3∗ ≡ q̄a ≡ ( ū d̄ s̄ ) . (9)

Mesons are in 3⊗3∗ and baryons are in 3⊗3⊗3.
We define the nonet 1−, 0−, and 0+ mesons by V ab , P

a
b ,

and Sab , respectively. These are constructed explicitly
as

3⊗3∗ ≡

⎛
⎝
uū ud̄ us̄
dū dd̄ ds̄
sū sd̄ ss̄

⎞
⎠ , (10)

V ab =⎛
⎜⎜⎝

ρ0+ω cos θV −φ sin θV√
2

ρ+ K∗+

ρ− −ρ0+ω cos θV −φ sin θV√
2

K∗0

K∗− K∗0 ω sin θV +φ cos θV

⎞
⎟⎟⎠ ,

(11)

P ab =⎛
⎜⎝

1√
2
π0+ 1√

6
η8+

1√
3
η1 π+ K+

π− − 1√
2
π0+ 1√

6
η8+

1√
3
η1 K0

K− K0 − 2√
6
η8+

1√
3
η1

⎞
⎟⎠ ,

(12)

Sab =

⎛
⎜⎝
uū a+0 K

+
0

a−0 dd̄ K00

K−0 K
0
0 ss̄

⎞
⎟⎠ . (13)

We have defined the ω–φmixing angle θV in the above. For
ideal mixing, θV = 0.
The Clebsch–Gordan coefficients for the production

subprocesses of (4)–(6) are calculated by the contribution
of the diagonal, a= b= c, part of the quantity

1

2
(V cb V

a
c +V

a
c V

c
b )S

b
a . (14)

This particular notation implies a spin-0 state in the s-
channel, but the structure of the expression is general to
any even-spin positive parity states. The f–f ′mixing angle
θS is defined by

a0 = (uū−dd̄)/
√
2 , (15)

f0 = cos θS(uū+dd̄)/
√
2+sin θS(ss̄) , (16)

f ′0 =− sin θS(uū+dd̄)/
√
2+cos θS(ss̄) . (17)

For later use, we define θP analogously, which describes
η–η′ mixing.
The Clebsch–Gordan coefficients can now be calcu-

lated, and these are listed in Table 1. We show the general
case as well as the two cases of ideal mixing corresponding
to θV = 0 and to θV = θS = 0. In reality, θV = 0 is a good
approximation, although θS = 0 is doubtful for the low-
lying resonances. The terms that vanish in the ideal mixing
case are OZI suppressed.
One consequence of the OZI suppression is that when

we consider the full production process, namely γγ→ V1V2



162 K. Odagiri, R.C. Verma: Flavour structure of low-energy hadron-pair photoproduction

Table 1. The V V S coupling coefficients. The overall symmetry factor 2 has been suppressed. The
vertices not listed here are forbidden by isospin conservation, so that we have gρ0ρ0a0 = gρ0ωf0 =
gρ0ωf ′0 = gρ0φf0 = gρ0φf

′
0
= gωωa0 = gωφa0 = gφφa0 = 0. We list the general case as well as the “ideal

mixing” case corresponding to θV = 0 and to θV = θS = 0

vertex general mixing θV = 0 θV = θS = 0

ρ0ρ0→ f0 cos θS/
√
2 cos θS/

√
2 1/

√
2

ρ0ρ0→ f ′0 − sin θS/
√
2 − sin θS/

√
2 0

ρ0ω,ωρ0→ a0 cos θV /
√
2 1/

√
2 1/

√
2

ρ0φ,φρ0→ a0 − sin θV /
√
2 0 0

ωω→ f0 cos2 θV cos θS/
√
2+sin2 θV sin θS cos θS/

√
2 1/

√
2

ωω→ f ′0 − cos2 θV sin θS/
√
2+sin2 θV cos θS − sin θS/

√
2 0

ωφ→ f0 sin θV cos θV (− cos θS/
√
2+sin θS) 0 0

ωφ→ f ′0 sin θV cos θV (sin θS/
√
2+cos θS) 0 0

φφ→ f0 sin2 θV cos θS/
√
2+cos2 θV sin θS sin θS 0

φφ→ f ′0 − sin2 θV sin θS/
√
2+cos2 θV cos θS cos θS 1

with the vector mesons in the final state, the channels that
necessarily involve an OZI-suppressed interaction are sup-
pressed, so that we expect

σ(γγ→ ρ0ρ0), σ(γγ→ ωω)

> σ(γγ→ ρ0ω)> σ(γγ→ φφ)

>> σ(γγ→ ρ0φ), σ(γγ→ ωφ). (18)

The reasoning goes as follows. Let us first emphasise
that this is for the entire s-channel production process
as given by the factorisation of (7). The photons first
couple to the appropriate vector boson, and then fuse into
a (scalar) resonance; they finally decay into the states
given above. In the ideal mixing case, ρ0ρ0 and ωω both
come from f decay with equal strength, so that ρ0ρ0

and ωω are approximately equal. ρ0ω can come from
a, but a production is slightly smaller than f , because
of the ratio of the ρ0 and ω contents of the photon.
φφ is suppressed because f ′ is less abundant than f ,
that is, ρ0ρ0→ f is the dominant resonance production
subprocess.

Table 2. The SPP coupling coefficients

final state a0 f0 f ′0

π+π− 0 cos θS
√
2 − sin θS

√
2

K+K− 1√
2

cos θS√
2
+sin θS − sin θS√

2
+cos θS

π0π0 0 cos θS
√
2 − sin θS

√
2

K0K0 − 1√
2

cos θS√
2
+sin θS − sin θS√

2
+cos θS

π0η, ηπ0 cos θP
√
2 0 0

π0η′, η′π0 − sin θP
√
2 0 0

ηη 0 2
(
cos2 θP

cos θS√
2
+sin2 θP sin θS

)
2
(
− cos2 θP

sin θS√
2
+sin2 θP cos θS

)

ηη′ 0 2 sin θP cos θP (−
cos θS√
2
+sin θS) 2 sin θP cos θP (

sin θS√
2
+cos θS)

η′η′ 0 2
(
sin2 θP

cos θS√
2
+cos2 θP sin θS

)
2
(
− sin2 θP

sin θS√
2
+cos2 θP cos θS

)

2.2 Meson-pair production

We now turn to the decay subprocess. Let us first consider
the production of pseudoscalar mesons. These are in the
nonet representation of (12).
The relevant coefficients can be obtained by the diag-

onal, a= b, part of

1

2
Sba (P

c
b P
a
c +P

a
c P

c
b ) . (19)

We list them in Table 2 .
Again, those modes that are OZI suppressed are accom-

panied by a factor sin θS or sin θP . However, since θP is now
considerably large,≈−39 degrees [22], the suppression fac-
tor is only moderate. θS is also considerably large for the
spin-0 bosons [23] although possibly not for the higher-spin
excitations of a, f and f ′.
We see that, after including the identical particle factor

of 1/2 for the π0π0 cross section we have

σ(γγ→ π+π−) = 2σ(γγ→ π0π0) , (20)
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regardless of the mixing angles or production dynamics.
We also see that the channels

γγ→ π0η, π0η′ (21)

can only proceed via the s-channel isovector a, so that the
observation of these processes would be interesting, con-
firming the presence of the isovector channel. The magni-
tude of these channels is related to the difference of the
kaon amplitudes, i.e.

∣∣∣A(γγ→K+K−)−A(γγ→K0K0)
∣∣∣
2

=
∣∣A(γγ→ π0η)∣∣2+ ∣∣A(γγ→ π0η′)∣∣2 . (22)

In particular, when the K+K− cross section dominates
over K0K0, and when Wγγ is sufficiently above the π

0η′

threshold, we obtain

σ(γγ→K+K−)≈ σ(γγ→ π0η)+σ(γγ→ π0η′) . (23)

This should be tested experimentally. However, we shall
show later that the ratio between the K+K− and K0K0

amplitudes is expected to be at most 4, and hence omitting
the K0K0 amplitude contribution is not a good approx-
imation. One possible assumption would be that the two
cross sections only differ by a real constant factor. The
cross section would then be scaled by

σ(γγ→K+K−)−→

σ(γγ→K+K−)×

⎛
⎝1−

√
σ(γγ→K0K0)

σ(γγ→K+K−)

⎞
⎠
2

.

(24)

Similarly, for the sum of the K+K− and K0K0 ampli-
tudes, we find that

2
[
A(γγ→K+K−)+A(γγ→K0K0)

]

=A(γγ→ ηη)+A(γγ→ η′η′) . (25)

However, this equality would be difficult to test experimen-
tally, unless it is found, for instance, that ηη dominates
over η′η′ when sufficiently above the threshold. In this case,
the relation would reduce to

σ(γγ→K+K−)≈
1

2
σ(γγ→ ηη) . (26)

The 12 factor on the right-hand side comes from the combi-
nation of the factor 2 in (25) and the factor 12 for identical
particle production. Again, we can adjust for the error in
neglecting the sub-leading amplitudes by a scaling similar
to (24), but with the minus sign in the brackets replaced by
a plus sign.
The above argument holds regardless of the produc-

tion subprocess V V → S. Let us now consider the inclusion
of the production subprocess. This is obtained by refer-
ring to (7). We adopt ideal mixing for the vector mesons,

so that θV = 0. The result, for γγ→K+K−,K0K0, π+π−

and π0π0 are

A(γγ→K+K−)

= F (f0)

(
cos θS√
2
+sin θS

)(
5

9

cos θS√
2
+
δ

9
sin θS

)

+F (f ′0)

(
sin θS√
2
− cos θS

)(
5

9

sin θS√
2
−
δ

9
cos θS

)

+
1

6
F (a0), (27)

A(γγ→K0K0)

= F (f0)

(
cos θS√
2
+sin θS

)(
5

9

cos θS√
2
+
δ

9
sin θS

)

+F (f ′0)

(
sin θS√
2
− cos θS

)(
5

9

sin θS√
2
−
δ

9
cos θS

)

−
1

6
F (a0), (28)

A(γγ→ π+π−)

= F (f0) cos θS

(
5

9
cos θS+

δ

9

√
2 sin θS

)

+F (f ′0) sin θS

(
5

9
sin θS−

δ

9

√
2 cos θS

)
, (29)

A(γγ→ π0π0)

= F (f0) cos θS

(
5

9
cos θS+

δ

9

√
2 sin θS

)

+F (f ′0) sin θS

(
5

9
sin θS−

δ

9

√
2 cos θS

)
. (30)

δ is defined in the paragraph below (8). The above expres-
sions simplify in the case θS = 0. As mentioned earlier, this
becomes acceptable for the higher-spin excitations of f, a
and f ′. We then have

A(γγ→K+K−)

=
1

18
[5F (f0)+2δF (f

′
0)+3F (a0)] , (31)

A(γγ→K0K0)

=
1

18
[5F (f0)+2δF (f

′
0)−3F (a0)] , (32)

A(γγ→ π+π−) =
5

9
F (f0), (33)

A(γγ→ π0π0) =
5

9
F (f0) . (34)

We may simplify further by the approximation F (f0) =
F (a0) and absorbing the difference between F (f

′
0) and

F (f0) in the coefficient δ. Under these conditions, i.e.,
F (a) = F (f) = F (f ′) for arbitrary δ, it turns out that the
whole dependence on θS cancels automatically, so that
ideal mixing becomes a redundant assumption. We obtain,
at the amplitude level,

K+K− :K0K0 : π+π− : π0π0 = 4+ δ : 1+ δ : 5 : 5 . (35)
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In particular, for the ratio of the γγ→K+K− and KSKS
cross sections, we have

σ(γγ→K+K−)

σ(γγ→KSKS)
≡ 2
σ(γγ→K+K−)

σ(γγ→K0K0)
= 2

(
4+ δ

1+ δ

)2
.

(36)

The conventional charge-counting argument [17, 18] cor-
responds to δ = 1 and therefore gives 25/2. On the other
hand, the complete suppression of f ′ gives rise to 32. Since
physically we expect δ to be positive definite, we obtain the
following inequality:

12.5<
σ(γγ→K+K−)

σ(γγ→KSKS)
< 32 . (37)

The upper limit of this equation seems to be satisfied by
the currently available data [12], within the statistical er-
rors. The closeness of the observed ratio at high energy
with the limiting value 32 indicates the suppression of the
strangeness coupling in this region. The lower limit seems
to be violated at lower energies [12]. One possible reason is
that, in this region, there is a dominant contribution from
f ′ corresponding to the possibility δ > 1, but another pos-
sible reason is that, as we shall argue later, a long-distance
interaction tends to respect isospin invariance, and so the a
coupling is suppressed.
Another quantity that may be interesting is the ratio of

theK+K− and π+π− cross sections. We obtain

σ(γγ→K+K−)

σ(γγ→ π+π−)
=

(
4+ δ

5

)2
. (38)

We therefore expect that sufficiently above the threshold,
the K+K− cross section is smaller than the π+π− cross
section by up to a factor of 16/25.
If the suppression factor δ is indicative only of the res-

onance structure denoted by F (f ′), and not the coupling,
of f ′, it then follows that the δ obtained by comparison of
these cross sections should be approximately the same as
the δ obtained by comparison of the K+K− and KSKS in
the same kinematic range, i.e., the same Wγγ and cos θ

∗

intervals. This should be tested experimentally.

2.3 Baryon-pair production

Baryons belong to the 3⊗3⊗3 representation, which is
decomposed as

3⊗3⊗3= 10S⊕8MS⊕8MA⊕1A . (39)

Out of these, phenomenologically the most relevant are the
1/2+ baryons in the octet representation. The subscripts
MS and MA stand for mixed symmetric and mixed anti-
symmetric, respectively. We write them as

8MS =B(a,b)c , (40)

8MA =B[a,b]c . (41)

Parentheses in the subscript represent the symmetric sum
and square brackets represent the antisymmetric sum, so
that

B(a,b)c =B(b,a)c , B[a,b]c =−B[b,a]c . (42)

Furthermore, the B[a,b]c also satisfy the Jacobi identity:

B[a,b]c+B[b,c]a+B[c,a]b = 0 . (43)

The symmetric and antisymmetric representations contain
the same physical states, and they are related by

Bab = ε
acdB(d,b)c =

1

2
εacdB[c,d]b , (44)

where εacd is the Levi-Civita tensor with the convention
ε123 = 1. Bab is the octet matrix. We first write down the
content of B[a,b]c explicitly:

B[1,2]1 = p , B[1,2]2 = n , B[1,2]3 =−2Λ/
√
6 ,

B[1,3]1 =−Σ
+ , B[1,3]2 =Σ

0/
√
2−Λ/

√
6, B[1,3]3 =−Ξ

0 ,

B[2,3]1 =Σ
0/
√
2+Λ/

√
6 , B[2,3]2 =Σ

−, B[2,3]3 =−Ξ
− .

(45)

The octet matrix Bab is then

Bab =

⎛
⎝
Σ0/
√
2+Λ/

√
6 Σ+ p

Σ− −Σ0/
√
2+Λ/

√
6 n

−Ξ− Ξ0 −2Λ/
√
6

⎞
⎠ .

(46)

There are three possibilities for evaluating the baryon–
baryon–meson SBB coupling. We can work in terms of
B(a,b)c,B[a,b]c orB

a
b . Here we adopt the following notation:

1

2
αB

[c,d]a
B[c,d]bM

b
a+βB

[a,c]d
B[b,c]dM

b
a . (47)

α and β are adjustable parameters satisfying [24, 25]

α≈ 5β . (48)

This relation comes from the approximate flavour SU(3)
symmetry for baryon–meson strong coupling constants.
On the other hand, for the naive charge-counting argu-
ment to work, we need to impose α= β. This point will be
demonstrated by an example later.
We can now tabulate the relevant coupling constants in

terms of α and β, and these are listed in Table 3.
We can consider forming equalities similar to (22)

and (25). In particular, we can make use of the ratios of the
a0 couplings:

A(γγ→ pp̄)−A(γγ→ nn̄) :

A(γγ→Σ+Σ+)−A(γγ→Σ−Σ−) :

A(γγ→ Ξ0Ξ0)−A(γγ→ Ξ−Ξ−) :

A(γγ→Σ0Λ)

= α : α+β : β :
α−β

2
√
3
. (49)
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Table 3. The SBB coupling coefficients

final state a0 f0 f ′0

pp̄ α/
√
2 (α+2β) cos θS/

√
2 −(α+2β) sin θS/

√
2

nn̄ −α/
√
2 (α+2β) cos θS/

√
2 −(α+2β) sin θS/

√
2

Σ+Σ+ α+β√
2

(α+β) cos θS/
√
2+β sin θS −(α+β) sin θS/

√
2+β cos θS

Σ0Σ0 0 (α+β) cos θS/
√
2+β sin θS −(α+β) sin θS/

√
2+β cos θS

Σ−Σ− −α+β√
2

(α+β) cos θS/
√
2+β sin θS −(α+β) sin θS/

√
2+β cos θS

ΛΛ 0 α+5β

3
√
2
cos θS +

2α+β
3 sin θS −α+5β

3
√
2
sin θS+

2α+β
3 cos θS

Ξ0Ξ0 β/
√
2 (α+β) sin θS +β cos θS/

√
2 (α+β) cos θS −β sin θS/

√
2

Ξ−Ξ− −β/
√
2 (α+β) sin θS +β cos θS/

√
2 (α+β) cos θS −β sin θS/

√
2

Σ0Λ,ΛΣ0 α−β√
6

0 0

Table 4. The limiting behaviour of γγ→BB amplitudes

final state 18A/F α= 5, β = 1, δ = 1 δ = 0

pp̄ 8α+10β 50 50
nn̄ 2α+10β 20 20

Σ+Σ+ 8α+(8+2δ)β 50 48

Σ0Σ0 5α+(5+2δ)β 32 30

Σ−Σ− 2α+(2+2δ)β 14 12

ΛΛ (5+4δ)α/3+(25+2δ)β/3 24 16.67

Ξ0Ξ0 2δα+(8+2δ)β 20 8

Ξ−Ξ− 2δα+(2+2δ)β 14 2

Σ0Λ,ΛΣ0 (α−β)
√
3 6.93 6.93

However, these will be difficult to verify experimentally.
This is partly because some final states, for example nn̄,
are difficult to measure, and partly because we do not ex-
pect in any of the pairs of reactions above that either of the
two amplitudes would become sufficiently dominant over
the other that the other can be neglected.
It is hence more helpful to make an estimation analo-

gous to (35). For example, the pp̄ amplitude is given, for
θV = 0, by

A(γγ→ pp̄)

=
5

18
(α+2β)

[
cos2 θSF (f0)+ δ sin

2 θSF (f
′
0)
]

+
α

6
F (a0) . (50)

As before, by taking θS = 0, F (f0) = F (a0) and absorbing
the difference between F (f0) and F (f

′
0) into the coefficient

δ, we arrive at

A(γγ→ pp̄)≈
F

9
(4α+5β) . (51)

We repeat the same exercise for the other production
modes and obtain the results listed in Table 4.
The statement made earlier about naive charge-

counting in case α= β can now be demonstrated explicitly.
For example, the ratio of the pp̄ and nn̄ amplitudes is given

by

8+10

2+10
=
3

2
=
12+22+22

12+12+22
. (52)

The ratios of cross sections sufficiently above the
threshold region are given by the square of the coefficients
listed in Table 4, so that, for instance,

σ(γγ→ pp̄)

σ(γγ→Σ0Σ0)
≈

(
8α+10β

5α+(5+2δ)β

)2
. (53)

This quantity turns out to be between ∼ 2.4 and ∼ 2.7
for α = 5β and 0 < δ < 1. The measurement of the Ξ0Ξ0

or Ξ−Ξ− cross section would be particularly interesting
because of the sensitivity to δ. From the discussion of pseu-
doscalar meson-pair production, we expect that δ is small,
so that this cross section would be suppressed by a factor
∼ (50/8)2 ∼ 40 compared to the pp̄ cross section.

3 Long- and short-distance dynamics

Let us model the short-distance amplitude as a scaling
contribution:

A∝
s4−K/2

(t−M21 ) (u−M
2
2 )
. (54)
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K is as appearing in (1).We take the twomassesM1 andM2
to be the corresponding hadronmasses as opposed to, for in-
stance, some appropriate quarkmasses.The contribution of
these mass terms is negligible in any case in the region of in-
terest. This expression gives rise to the angular distribution
≈ (1− cos2 θ2)−2, which is characteristic of single quark ex-
change, or more generally light particle exchange, in the t-
channel. This angular distribution would be valid at high
energy, and the scaling behaviour of (1) implies that the an-
gular distributionmust remain the same at low-energy.
To this we add a long-distance pole (–resonance) contri-

bution that has the Regge limiting form:

A∝ Γ (�−α(t)) [1+ τ exp(−iπα(t))] (α′s)α(t)

+(t↔ u) . (55)

The linear trajectory is parametrised, α(t) = α(0)+α′t,
as usual, with α′ ≈ 0.9 GeV−2. � is the lowest spin of the
trajectory, and τ = ±1 is the signature. For baryons, the
signature term is modified to [32]

1+ τ exp (−iπ (α(t)−1/2)) . (56)

It is found [30] that a simple Regge expression similar
to (55) yields the characteristic behaviour in the central
region cos θ∗ ≈ 0 that is in accordance with the γγ→ pp̄
data just above the threshold. This may seem surprising at
first sight, but is reasonable, considering that the (Regge)
pole amplitude and the resonance amplitude are related by
(semi-local) duality [26–29]. After integrating over the res-
onances, the behaviour of the two amplitudes is similar. In
particular, this method works well in the case of pp̄, since
the cross section is a smooth function ofWγγ and no trace
of resonances is seen. For K+K−, the resonance structure
is still seen, so that we may, for instance, replace the Regge
amplitude with a resonance–pole dual amplitude of the
Veneziano model [31].

3.1 Baryon-pair production

Let us first consider pp̄ production. In (54), we set K = 8.
In (55) with the modification of (56), we set �= 1

2 . As for
the trajectories [32], the leading S = 0 contributions, the
N/∆, have the following parametrisation:

Nα : α(t) =−0.34+0.99t , (57)

Nγ : α(t) =−0.63+0.89t , (58)

Nβ : α(t) = 0+0.9t , (59)

∆δ : α(t) = 0.07+0.92t . (60)

Nα andNβ are of even signature, whereasNγ andNδ are of
odd signature. TheN are isospin 1/2 and the∆ are isospin
3/2, as usual. Both exchanges are allowed, although ∆ ex-
change can only take place in ρρ→ pp̄ and not in the other
subprocesses.
In principle, we should include all four contributions.

In practice, however, we found phenomenologically that
the inclusion of just one trajectory, the Nβ trajectory, is
sufficient.

For the explicit α′ in (55), as opposed to the α′ implicit
in the trajectory α(t), we adopt 0.9 GeV−2.
In Fig. 3, we show the scaling amplitude, the Regge am-

plitude, and the sum of the two. We first fix the normalisa-
tion of the scaling contribution by fitting by the eye with
the data at Wγγ near 4 GeV. We then adjust the Regge
contribution, so that the sum of the two terms fits the in-
tegrated cross section.
There is good agreement with the data, except in the

region just above the threshold. Even this region shows im-
provement compared with our previous calculation in [30],
where the signature term was neglected. We note that by
further modifying the signature term by the artificial sub-
stitution τ →−i, we were able to obtain the fall-off near
threshold seen in the real data. This suggests the possi-
bility that the inclusion of other trajectories and/or reso-
nances with appropriate strengths may change the thresh-
old behaviour.
The angular distributions are shown in Fig. 4. The

shifting of the peak of the central angular distribution
from the cos θ ≈ 0 region to the forward region occurs
slightly faster (about 100MeV faster) in the theoret-
ical curve than in the experimental data. However, the
overall trend is in fair agreement with that seen in the
experiment.
Having achieved this level of agreement, it becomes de-

sirable to be able to extend our results to the case of other
baryons, for instance Λ and Σ0 [33, 34]. However, there is
no good method for estimating the Regge couplings [20].
On the other hand, we expect that for all baryons, the
Regge contributions dominate over the scaling contribu-
tion, since the Regge contribution is expected to be more
insensitive to the type of the baryon [20], whereas the scal-
ing contribution, from Table 4, is always smaller than the
proton-pair case.

Fig. 3. The γγ → pp̄ integrated cross section in the region
| cos θ∗|< 0.6. We show the Belle result with three theoretical
results: scaling based on the quark-counting rule, the Regge
amplitude, and the sum of the two. The vertical error-bars only
includes the statistical uncertainty
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Fig. 4. The angular distribution of γγ→ pp̄. The results of three theoretical model calculations are compared with the experi-
mental data from [1, 2]

As noted in [30], just above the threshold region, we
expect invariance under u↔ d, as opposed to the d↔ s
symmetry that follows from the perturbative
approaches [17, 18, 35]. This implies, in the s-channel pic-
ture, the suppression of the isovector a component. Hence
Σ0Λ production would be suppressed.
The size of the scaling contribution to each baryon-

pair can be estimated from Table 4, but this is, as seen in
the above results, small. The more central, or the higher-
energy region, is expected to have a more short-distance
character and so the argument of Sect. 2 can be applied.

3.2 Meson-pair production

We now consider meson-pair photoproduction. In (54), we
setK = 6. In (55), we set �= 1.

The signature τ in (55) can be ±1 depending on the
spin of the trajectory. However, unlike in the baryonic case
discussed above, we have spin-degenerate trajectories with
τ =+1 and τ =−1. τ =+1 corresponds to the exchange of
even-spin mesons:

A∝ Γ (1−α(t)) (1+exp(−iπα(t))) (α′s)α(t) . (61)

The odd-spin mesons have τ =−1 and

A∝ Γ (1−α(t)) (1− exp(−iπα(t))) (α′s)α(t) . (62)

Adding together the contributions of the degenerate tra-
jectories, the contribution of the signature term in general
tends to cancel. In the limiting case of perfect cancellation,
there are two possibilities.
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1. The two amplitudes add with the same sign, leading to
the cancellation of exp(−iπα(t)). This corresponds to
the cancellation of the handbag diagrams in Fig. 2.

2. The two amplitudes add with opposite sign, leading to
the cancellation of the constant-phase term. This cor-
responds to the cancellation of the cat’s ears diagram
in Fig. 2.

Let us denote these respectively as ‘Regge cat’s ears’ and
‘Regge handbag’. It turns out that the plateau structure
of the K+K− integrated cross section is only reproduced
in the ‘Regge handbag’ case, since a rotating phase is ne-
cessary to yield non-trivial interference with the scaling
contribution.
Let us therefore consider the ‘Regge handbag’ case.

Here, we can write the combined amplitude as a s–t dual
amplitude. Using the simple Veneziano amplitude of [30],
we are able to simulate both the resonance and the pole
regions with the expression

A∝
Γ (1−α(t))Γ (1−α(s))

Γ (1−α(t)−α(s))
+ (u↔ t) , (63)

from which we can recover the Regge amplitude by the ap-
plication of the Stirling factorial approximation. Because
of the resonance–pole duality, the discussion of Sect. 2
holds. This has the implication that relations between am-
plitudes such as (22) and (25) are satisfied.
We fit the scaling amplitude by the eye to the data near

4 GeV. We then study the behaviour of the sum of this am-
plitude and the parametrisation of [30]. The result is shown
in Fig. 5. The scaling curve fits the data reasonably above
about 2.5GeV. Below 2.5GeV, the behaviour of the inte-

Fig. 6. The angular distribution of γγ→K+K− at three representative energy ranges in between 1.40 and 2.24 GeV (upper row),
and between 2.00 and 2.20 GeV (lower row). We show the Belle data, the scaling contribution, the Veneziano model contribution
and the squared sum of the two. The vertical error-bars on the Belle data are statistical only

Fig. 5. γγ →K+K− integrated cross section in the region
| cos θ∗| < 0.6. The experimental results [3, 4] are compared
with scaling, the Veneziano model, and the sum of the two

grated cross section is still close to the scaling curve, but
this is accidental since the behaviour of the angular distri-
bution is far from that parametrised by (54). On the other
hand, the Veneziano amplitude by itself provides a semi-
quantitative description of the data below about 2 GeV
although the plateaus just below and above 2 GeV are not
reproduced.
The sum of the two amplitudes shows a striking re-

semblance to the real data, except below 1.5GeV. In par-
ticular, this reproduces the plateaus. These come from
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the non-trivial interference between the long-distance and
short-distance contributions to the amplitude, and are, as
seen in Fig. 5, not correlated directly with the shape of the
resonances.
This apparent resemblance with the data is, however,

misleading, since the angular distribution does not cor-
rectly reproduce the structure of the experimental data.
This is seen in Fig. 6, which shows the distribution at three
representative energy ranges and in the region between
2.00 and 2.20 GeV. For most of the energy range, the sum of
the two amplitudes does not yield a better approximation
to the angular distribution than either of the two individ-
ual contributions.
The plateau structure is weakened but still visible when

we adopt the Regge limiting expression of the Veneziano
amplitude, as shown in Fig. 7. The situation with respect
to the angular distribution improves in the Regge limit-
ing case, especially above 2 GeV. This is shown in Fig. 8.
The improvement in the fit compared with the Veneziano
amplitude is mostly due to the reduced size of the Regge
limiting expression compared to the Veneziano amplitude.
If the Regge amplitude normalisation is modified to more
closely resemble that of the Veneziano amplitude, the fit
deteriorates.
The angular distribution below 2GeV is not well

reproduced.
Since the Veneziano amplitude by itself fits the dis-

tribution well in the low-energy region, it is tempting to
introduce a form factor that allows for a smooth tran-
sition between the long-distance and scaling amplitudes.
We have experimented with several such possibilities and
found that although the fit with the angular distribution

Fig. 8. The angular distribution of γγ→K+K−, at three representative energy ranges in between 1.40 and 2.24 GeV (upper row)
and between 2.00 and 2.20 GeV (lower row). We show the Belle data with the addition of the scaling and Regge amplitudes. The
vertical error-bars on the Belle data are statistical only

Fig. 7. γγ →K+K− integrated cross section in the region
| cos θ∗| < 0.6. The experimental results [3, 4] are compared
with the sum of the Regge and scaling amplitudes

improves, it is difficult to obtain the plateau structure of
the integrated cross section.
Let us now turn our attention to the KSKS cross sec-

tion. We make two assumptions for the K0K0 =KSKS+
KLKL cross section with respect to the K

+K− cross sec-
tion, namely the following.

1. The scaling amplitude is scaled by a constant factor of
1/4;

2. the Veneziano amplitude remains the same.
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Fig. 9. γγ → KK integrated cross section in the region
| cos θ∗| < 0.6 , for K+K− and KSKS . We show the re-
gion 2.4 GeV < Wγγ < 4 GeV. We show the experimental
results [3, 4] and the sum of the scaling and Veneziano model
amplitudes

The first implies the complete exclusion of the strange-
quark contribution, and the second implies the invariance
of the long-distance amplitude with respect to isospin.
The results are shown in Fig. 9. The large ratio between

K+K− and KSKS cross sections, as well as the increasing
ratio between the two, is reproduced. However, the ratio
seems to increase more rapidly in the real data.
From our above results of the K+K− cross section, we

expect that the angular distribution may not be repro-
duced correctly. However, if the long-distance effects are
still active in the high-energy range, a model-independent
statement is that the angular distribution would be af-
fected and will not be given by a simple scaling form such
as (54).
We note that for pions, both in the analysis of Sect. 2

and in the Regge/Veneziano amplitudes, isospin invariance
is respected. Hence we expect

σ(γγ→ π0π0)

σ(γγ→ π+π−)
=
1

2
, (64)

always, so long as the small difference in the neutral and
charged pion masses can be neglected. The ratio would be
violated by the inclusion of “cat’s ears”-type diagrams.

4 Conclusions

We studied exclusive hadron-pair photoproduction pro-
cesses in low-energy photon–photon collisions.
Motivated by the experimental observation of the unex-

pectedly large suppression of the ratio KSKS/K
+K−, we

looked into the SU(3) structure of the couplings involved in
these processes, adopting an s-channel picture.
We presented the calculations both for the nonet

mesons and for the octet baryons. We argued that the dif-

ference between KSKS and K
+K− cross sections is due to

the simultaneous presence of f/f ′ and a in the s-channel.
The ratio is further enhanced when the f ′ contribution is
suppressed. We argued that this could be as large as 32.
We proceeded with a model in which the ratio applies

predominantly to the part of the amplitude that obeys
a scaling behaviour. We added to this a long-distance am-
plitude whose limiting behaviour is given by Regge theory.
This latter amplitude tends to be invariant under isospin.
For the γγ→ pp̄ process, adopting a Regge amplitude

for the long-distance dynamics, we obtain a distribution
that not only fits the integrated cross section well but re-
produces the behaviour of the angular distribution.
For γγ → K+K−, the long-distance dynamics was

simulated using the Veneziano model. The summation of
this and the scaling amplitude results in a curve for the in-
tegrated cross section that is similar to the experimental
data. On the other hand, the angular distribution is not
well reproduced. The Regge limiting amplitude shows a
better fit with the data, mainly because of the reduced size
of the amplitude compared to the Veneziano amplitude. In
any case, the distribution near the f ′ peak is reproduced
better by the pure Veneziano/Regge amplitudes, possibly
indicating the incompleteness in our parametrisation of the
resonance region.
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